spot_img
spot_img

नए एंटीबॉडी, एंजाइम, खाद्य पदार्थ खोजने में मदद कर सकता है Google ML

अल्फाबेट (गूगल की मूल कंपनी) की सहायक कंपनी डीपमाइंड ने दिखाया है कि मशीन लनिर्ंग (ML) अभूतपूर्व सटीकता के साथ प्रोटीन मशीनरी के आकार की भविष्यवाणी कर सकती है, जिससे शोधकर्ताओं के लिए नए एंटीबॉडी, एंजाइम और खाद्य पदार्थों की खोज का मार्ग प्रशस्त होता है।

New Delhi: अल्फाबेट (गूगल की मूल कंपनी) की सहायक कंपनी डीपमाइंड ने दिखाया है कि मशीन लनिर्ंग (ML) अभूतपूर्व सटीकता के साथ प्रोटीन मशीनरी के आकार की भविष्यवाणी कर सकती है, जिससे शोधकर्ताओं के लिए नए एंटीबॉडी, एंजाइम और खाद्य पदार्थों की खोज का मार्ग प्रशस्त होता है। एक प्रोटीन का आकार बहुत मजबूत सुराग प्रदान करता है कि कैसे प्रोटीन मशीनरी का उपयोग किया जा सकता है, लेकिन इस प्रश्न को पूरी तरह से हल नहीं करता है।

ब्रेन टीम में गूगल रिसर्च के स्टाफ सॉफ्टवेयर इंजीनियर, मैक्स बिलेस्की ने कहा, “तो हमने खुद से पूछा: क्या हम भविष्यवाणी कर सकते हैं कि प्रोटीन क्या कार्य करता है?” नेचर बायोटेक्नोलॉजी लेख में, गूगल ने वर्णन किया है कि कैसे तंत्रिका नेटवर्क प्रोटीन ब्रह्मांड के ‘डार्क मैटर’ के कार्य को मजबूती से प्रकट कर सकते हैं, जो अत्याधुनिक तरीकों से बेहतर प्रदर्शन करते हैं।

डीपमाइंड ने ईएमबीएल के यूरोपीय जैव सूचना विज्ञान संस्थान (ईएमबीएल-ईबीआई) में अंतर्राष्ट्रीय स्तर पर मान्यता प्राप्त विशेषज्ञों के साथ मिलकर काम किया, ताकि प्रोटीन परिवारों और उनके कार्यों के लिए एक वैश्विक भंडार ‘पीफेम वी34.0 डेटाबेस’ रिलीज में 6.8 मिलियन अधिक प्रोटीन क्षेत्रों की व्याख्या की जा सके।

ये एनोटेशन पिछले दशक में डेटाबेस के विस्तार से अधिक हैं, और दुनिया भर के 2.5 मिलियन जीवन-विज्ञान शोधकर्ताओं को नए एंटीबॉडी, एंजाइम, खाद्य पदार्थ और चिकित्सा विज्ञान की खोज करने में सक्षम बनाएंगे।

सभी जीवों का उत्पादन करने वाले सभी प्रोटीनों में से लगभग एक तिहाई के लिए, हम नहीं जानते कि वे क्या करते हैं।

ब्रेन टीम में गूगल रिसर्च के वरिष्ठ स्टाफ रिसर्च साइंटिस्ट, लुसी कोलवेल ने कहा, “यह ऐसा है जैसे हम एक कारखाने में हैं जहां सब कुछ गुलजार है और हम इन सभी प्रभावशाली उपकरणों से घिरे हुए हैं, लेकिन हमारे पास केवल एक अस्पष्ट विचार है कि क्या हो रहा है। यह समझना कि ये उपकरण कैसे काम करते हैं और हम उनका उपयोग कैसे कर सकते हैं , वह जगह है जहां हमें लगता है कि मशीन लनिर्ंग एक बड़ा बदलाव ला सकता है।”

पीफेम डेटाबेस प्रोटीन परिवारों और उनके अनुक्रमों का एक बड़ा संग्रह है। शोधकर्ताओं ने कहा, “हमारे एमएल मॉडल ने डेटाबेस में 6.8 मिलियन अधिक प्रोटीन क्षेत्रों को एनोटेट करने में मदद की।”

कंपनी ने एक इंटरैक्टिव वैज्ञानिक लेख भी लॉन्च किया है जहां ‘वास्तविक समय में परिणाम प्राप्त करना, आपके वेब ब्राउजर में, बिना किसी सेटअप की आवश्यकता के आप हमारे एमएल मॉडल के साथ खेल सकते हैं।’

शोधकर्ताओं के अनुसार, मौजूदा तरीकों के साथ गहरे मॉडल के संयोजन से दूरस्थ समरूपता का पता लगाने में काफी सुधार होता है, यह सुझाव देता है कि गहरे मॉडल पूरक जानकारी सीखते हैं।

यह दृस्ष्टिकोण पीफेम के कवरेज को 9.5 प्रतिशत से अधिक बढ़ाता है, जो पिछले दशक में किए गए परिवर्धन से अधिक है, और पिछले पीफेम एनोटेशन के बिना 360 मानव संदर्भ प्रोटिओम प्रोटीन के लिए कार्य की भविष्यवाणी करता है। “परिणाम बताते हैं कि गहन शिक्षण मॉडल भविष्य के प्रोटीन एनोटेशन टूल का एक मुख्य पुर्जा होगा।”

Leave a Reply

Hot Topics

Related Articles

Don`t copy text!